Software Security,
Implementation Flaws,
and Memory Safety

CS 161: Computer Security

Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/

“ (\an_.luurm; 3 *Ew{g e

char name[20];
void vulnerable() {

gets(name);

char name[20];
char instrux[80] = "none";

void vulnerable() {

gets(name);

char 1line[512];
char command[] = "/usr/bin/finger";

void main() A
gets(line);

execv(command, ...);

}

char name[20];
int seatinfirstclass = 0;

void vulnerable() {

gets(name);

char name[20];
int authenticated = ©;

void vulnerable() {

gets(name);

Code Injection

Excerpt From A Simple Network Server

void get cookie (char *packet) ({
. (200 bytes of local vars) .

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Normal Execution

void get cookie(char *packet) {

Stack

. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Normal Execution

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

stack frame

) X —»

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Normal Execution

void get cookie (char *packet) ({
. (200 bytes of local vars) .

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Stack

X+200 >

get cookie()’s
stack frame

return address back
to get_cookie()

Example: Normal Execution

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

stack frame

) X —>
return address back

void munch (char *packet) { X -4, to get_cookie()

int n;

char cookie[512]; X-8—P

cookie
code here computes offset of cookie in

packet, stores it in n X - 520 —»

strcpy (cookie, &packet[n]);

Example: Normal Execution

void get cookie (char *packet) ({

Stack

. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

stack frame

) X —>
return address back

void munch (char *packet) { X -4, to get_cookie()

int n;

n
char cookie[512]; X-8—P
o cookie
code here computes offset of cookie in
packet, stores it in n X - 520 —p
strcpy (cookie, &packet[n]); return address back
« X -524 _ to munch()

} strepy()’s stack ...

Example: Normal Execution

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

- stack frame
) x>

return address back

void munch (char *packet) { X -4, to get_cookie()

int n; 0

char cookie[512]; X-8—P

code here computes offset of cookie in cookie value read

packet, stores it in n X - 520 —p from packet

strcpy (cookie, &packet[n]) return address back
< X-524 _, to munch()

Example: Normal Execution

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

- stack frame
) x>

return address back

void munch (char *packet) { X -4, to get_cookie()

int n; 0

char cookie[512]; X-8—P

code here computes offset of cookie in cookie value read
packet, stores it in n X - 520 —p from packet

strcpy (cookie, &packet[n]);

Example: Normal Execution

void get cookie (char *packet) ({
. (200 bytes of local vars) .

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Stack

X+200 >

get cookie()’s
stack frame

return address back
to get_cookie()

Example: Normal Execution

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

stack frame

) X —»

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Normal Execution

void get cookie (char *packet) ({

Stack

. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Buffer Overflow

void get cookie(char *packet) {

Stack

. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Buffer Overflow

void get cookie (char *packet) ({

. (200 bytes of local vars) . . . y 4000 —»

Stack

munch (packet) ;

get cookie()’s
stack frame

) X —»

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Buffer Overflow

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

stack frame

) X —>
return address back

void munch (char *packet) { X -4, to get_cookie()

int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Buffer Overflow

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

stack frame

) X —>
return address back

void munch (char *packet) { X -4, to get_cookie()

int n;

char cookie[512]; X-8—P

cookie
code here computes offset of cookie in

packet, stores it in n X - 520 —»

strcpy (cookie, &packet[n]);

Example: Buffer Overflow

void get cookie (char *packet) ({

Stack

. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; get cookie()’s

stack frame

) X —>
return address back

void munch (char *packet) { X -4, to get_cookie()

int n;

n
char cookie[512]; X-8—P
o cookie
code here computes offset of cookie in
packet, stores it in n X - 520 —p
strcpy (cookie, &packet[n]); return address back
« X -524 _ to munch()

} strepy()’s stack ...

Example: Buffer Overflow

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

r;1u1:1ch (packet) ; gegglg ie
stack fgame
) X —» Za.lll_e

_ return address bgack
void munch (char *packet) { to
X-4_»

int n;

n
char cookie[512]; X - 8—’—#9-m—
code here computes offset of cookie in p a CK et

packet, stores it in n X - 520 —»

strcpy (cookie, &packet[n]); return address back
- X -524 _ to munch()

Example: Buffer Overflow

void get cookie (char *packet) ({
. (200 bytes of local vars) .

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

47

Stack

X+200 >

@ngke
stack [ame

X -4

X-8—P

X -520 —»

ret;JOrn address btk
—from—
packet

return address back

X -524 _,

to munch()

Example: Buffer Overflow

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; gegglg !e
- 29 stack fgame
| x__vallie
_ _/ return address back
void munch (char *packet) { to
X-4_

int n;

n
char cookie[512]; X - 8—’—#9-m—
code here computes offset of cookie in p a CK et

packet, stores it in n X - 520 —»

strcpy (cookie, &packet[n]);

Example: Buffer Overflow

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ; gegglg !e
- 29 s&ﬁkfame
| x__vallie
_ _/ return address back
void munch (char *packet) { to
X-4_

int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

-

Example: Buffer Overflow

Cragh

Example: Code Injection

void get cookie(char *packet) {

Stack

. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Code Injection

void get cookie (char *packet) ({

. (200 bytes of local vars) . . . y 4000 —»

Stack

munch (packet) ;

get cookie()’s
stack frame

) X —»

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Code Injection

void get cookie (char *packet) ({

. (200 bytes of local vars) . . . y 4000 —»

Stack

munch (packet) ;

get cookie()’s
stack frame

) X —»

void munch (char *packet) {

return address back
to get_cookie()

int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Code Injection

void get cookie (char *packet) ({

. (200 bytes of local vars) . . . y 4000 —»

Stack

munch (packet) ;

get cookie()’s
stack frame

) X —»

void munch (char *packet) {

return address back
to get_cookie()

X -4
int n;
char cookie[512]; X-8—P
code here computes offset of cookie in
packet, stores it in n X - 520 —p

cookie

strcpy (cookie, &packet[n]);

Example: Code Injection

void get cookie (char *packet) ({

Stack

. (200 bytes of local vars) . . . y 4000 —»

munch (packet) ;

get cookie()’s
stack frame

) x>
_ N return address back
void munch (char *packet) { X -4—p to get_cookie()
int n; n
char cookie[512]; X-8—P
o cookie
code here computes offset of cookie in
packet, stores it in n X - 520 —p

strcpy (cookie, &packet[n]);

« X - 524 _

return address back
to munch()

strepy()’s stack ...

Example: Code Injection

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»

r;1u1:1ch (packet) ; gegglg ie
stack fgame
) X —» Za.lll_e

_ return address bgack
void munch (char *packet) { to
X-4_»

int n;

n
char cookie[512]; X - 8—’—#9-m—
code here computes offset of cookie in p a CK et

packet, stores it in n X - 520 —»

strcpy (cookie, &packet[n]); return address back
- X -524 _ to munch()

Example: Code Injection

void get cookie (char *packet) ({
. (200 bytes of local vars) .

munch (packet) ;

}

void munch (char *packet) {
int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

<

Stack
X+200 —>
Executable
« Code
_>
X

X -4

<Doesn’t Matter>
X-8—P

<Doesn’t Matter>
X -520 —»

X -524 _,

return address back
to munch()

Example: Code Injection

void get cookie (char *packet) ({

Stack
. (200 bytes of local vars) . . . y 4000 —»
munch (packet) ; Executable
e Code
X(—»
}
void munch (char *packet) { X
_ X -4
int n; <Doesn’t Matter>
char cookie[512]; X-8—P

L <Doesn’t Matter>
code here computes offset of cookie in

packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Code Injection

void get cookie (char *packet) ({

. (200 bytes of local vars) . . . y 4000 —»

Stack

munch (packet) ;

Executable
Code

void munch (char *packet) { X -4

X

int n;

char cookie[512];

code here computes offset of cookie in
packet, stores it in n

strcpy (cookie, &packet[n]);

Example: Code Injection

void get cookie(char *packet) {

. (200 bytes of local vars) . . . X + 200 —>

Stack

Executable
Code

}

voi

 Now branches to code read in from x{,

the network
4

X

c From here on, machine falls
under the attacker’s control

C
y2
strcpy (cookie, &packet[n]);

Rank||Score ID Name
[1] 346 ||[CWE-79 |Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
[2] 330 ||[CWE-89 |Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
[3] 273 % Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4] 261 %ZE' Cross-Site Request Forgery (CSRF)
[B] 219 % Improper Access Control (Authorization)
[6] 202 % Reliance on Untrusted Inputs in a Security Decision
[7] [|197 ||[CWE-22 |Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
[8] (194 % Unrestricted Upload of File with Dangerous Type
(9] 188 |CWE-78 Irr!prc-.per Neutralization of Special Elements used in an OS Command ("OS Command
Injection")
[10] (188 % Missing Encryption of Sensitive Data
[11] (176 % Use of Hard-coded Credentials
[12] (158 % Buffer Access with Incorrect Length Value
- - - . -
[13] |157 ||cwE-98 Imprc-_per Control of Filename for Include/Require Statement in PHP Program ('PHP File
Inclusion")
[14] (156 % Improper Validation of Array Index
[15] 155 % Improper Check for Unusual or Exceptional Conditions
[16] (154 CWE- Information Exposure Through an Error Message

5 Minute Break

Questions Before We Proceed?

void vulnerable() {
char buf[64];
gets(buf);

void still vulnerable?() {
char buf = malloc(64);
gets(buf);

IE's Role in the Google-China War

By Richard Adhikari
TechNewsWorld
01/15/10 12:25 PM PT

The hack attack on Google that set off the company's
ongoing standoff with China appears to have come
through a zero-day flaw in Microsoft's Internet Explorer
browser. Microsoft has released a security advisory, and
researchers are hard at work studying the exploit. The attack appears to consist
of several files, each a different piece of malware.

Computer security companies are scurrying to cope with the fallout from the Internet
Explorer (IE) flaw that led to cyberattacks on Google (Nasdaq: GOOG) and its corporate
and individual customers.

The zero-day attack that exploited IE is part of a lethal cocktail of malware that is keeping
researchers very busy.

"We're discovering things on an up-to-the-minute basis, and we've seen about a dozen
files dropped on infected PCs so far," Dmitri Alperovitch, vice president of research at
McAfee Labs, told TechNewsWorld.

The attacks on Google, which appeared to originate in China, have sparked a feud
between the Internet giant and the nation's government over censorship, and it could
result in Google pulling away from its business dealings in the country.

Pointing to the Flaw

he vulnerability in IE is an invalid pointer reference, Microsoft (Nasdaq: MSFT) said In
security advisory 979352, which it issued on Thursday. Under certain conditions, the
invalid pointer can be accessed after an obJect is deleted, the advisory states. In i

remote execution of code when the flaw is exploited.

void safe() {
char buf[64];
fgets(buf, 64, stdin);

void safer() {
char buf[64];
fgets(buf, sizeof buf, stdin);

void vulnerable() {
char buf[64];
if (fgets(buf, 64, stdin) == NULL)
return;
printf(buf);
}

void vulnerable(int len, char *data) {
char buf[64];
if (len > 64)
return;
memcpy(buf, data, len);

}

Pl N

memcpy(void *sl, const void *s2, @ize_t n);

void safe(size t len, char *data) {
char buf[64];
if (len > 64)
return;
memcpy(buf, data, len);

}

void vulnerable(size t len, char *data) {
char *buf = malloc(len+2);
memcpy(buf, data, len);
buf[len] = '\n';
buf[len+l] = "\0';

Broward Vote-Counting Blunder Changes Amendment Result

POSTED: 1:34 pm EST November 4, 2004

BROWARD COUNTY, Fla. -- The Broward County Elections Department has egg on its face today
after a computer glitch misreported a key amendment race, according to WPLG-TV in Miami.

Amendment 4, which would allow Miami-Dade and Broward counties
to hold a future election to decide if slot machines should be allowed at
racetracks, was thought to be tied. But now that a computer glitch for
machines counting absentee ballots has been exposed, it turns out the
amendment passed.

csoltware 1s not geared to count more than 32,000 votes in a _
precinct. So what happens when it gets to 32,000 is the software starts ' | %ﬁ, 2
squnting backward," said Broward County Mayor Ilene Lieberman, Broward County Mayor o

[lene Lieberman says
voting counting error is an
"embarrassing mistake."

That means that Amendment 4 passed in Broward County by more
than 240,000 votes rather than the 166,000-vote margin reported
Wednesday night. That increase changes the overall statewide results
in what had been a neck-and-neck race, one for which recounts had
been going on today. But with news of Broward’s error, it’s clear amendment 4 passed.

